We present a new experimental platform for studying laboratory astrophysics that combines a high-intensity, highrepetition-rate laser with the Large Plasma Device at the University of California, Los Angeles. To demonstrate the utility of this platform, we show the first results of volumetric, highly repeatable magnetic field and electrostatic potential measurements, along with derived quantities of electric field, charge density and current density, of the interaction between a super-Alfvenic laser-produced plasma and an ambient, magnetized plasma.