Fast gated imaging of the collisionless interaction of a laser-produced and magnetized ambient plasma

Abstract

The collisionless interaction between a laser-produced carbon plasma (LPP) and an ambient hydrogen plasma in a background magnetic field was studied in a high shot rate experiment which allowed large planar data sets to be collected. Plasma fluorescence was imaged with a fast-gated camera with and without carbon line filters. The resulting images were compared to high-resolution two dimensional (2D) data planes of measured magnetic field and electric potential. Several features in the fluorescence images coincide with features in the field data. Relative intensity was used to determine the initial angular velocity distribution of the LPP and the growth rate of instabilities. These observations may be applied to understand fluorescence images from similar experiments where 2D planes of field data are not available.

Publication
In High Energy Density Physics
Lucas Hofer
Lucas Hofer
PhD Student in Atomic and Laser Physics

My research interests include ultracold atoms and deep learning.