Atom Cloud Detection and Segmentation Using a Deep Neural Network

Abstract

We use a deep neural network (NN) to detect and place region-of-interest (ROI) boxes around ultracold atom clouds in absorption and fluorescence images—with the ability to identify and bound multiple clouds within a single image. The NN also outputs segmentation masks that identify the size, shape and orientation of each cloud from which we extract the clouds’ Gaussian parameters. This allows 2D Gaussian fits to be reliably seeded thereby enabling fully automatic image processing. The method developed performs significantly better than a more conventional method based on a standardized image analysis library (Scikit-image) both for identifying ROI and extracting Gaussian parameters.

Publication
In Machine Learning Science and Technology
Lucas Hofer
Lucas Hofer
PhD Student in Atomic and Laser Physics

My research interests include ultracold atoms and deep learning.